Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Other literature type . 2020
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Innovative Approach to Determine Coastal Scenic Beauty and Sensitivity in a Scenario of Increasing Human Pressure and Natural Impacts due to Climate Change

Authors: Alexis Mooser; Giorgio Anfuso; Allan T. Williams; Rosa Molina; Pietro P. C. Aucelli;

An Innovative Approach to Determine Coastal Scenic Beauty and Sensitivity in a Scenario of Increasing Human Pressure and Natural Impacts due to Climate Change

Abstract

Coasts worldwide face a great variety of environmental impacts, as well as increased anthropogenic pressures due to urbanization and rapid population growth. Human activities menace ecosystem services and the economy of coastal countries, often based on “Sun, Sea and Sand” (3S) tourism. The five parameters of greatest importance (the “Big Five”) for beach visitors are safety, facilities, water quality, no litter and scenery, and the characterization of the latter was recently carried out by means of a checklist of 26 natural and human parameters, parameter weighting matrices and fuzzy logic, according to the “Coastal Scenic Evaluation System” (CSES) methodology. In order to propose sound coastal management strategies, the main aim of this paper is to propose a method to determine the scenic sensitivity of (i) natural parameters to coastal natural processes in a Climate Change context and (ii) human parameters to visitors’ pressure in a scenario of increasing tourism and coastal developments. Regarding natural parameters, the sensitivity of “Beach face” and “Dunes” parameters is determined according to an Erodibility Index with a Correction Factor, taking into account wave forcing characteristics, tidal range and trends at a local scale of Sea Level Rise and Storm Surge. This establishes a Sensitivity Index to natural processes. A site’s scenic sensitivity to human pressure/activities was determined by considering the sensitivity of several human parameters of the CSES method according to beach typology and access difficulty together with the Protection Area Management Category to which a site belongs. A Human Impact Index is obtained, which is afterwards corrected by taking into account local trends of tourism pressure, establishing a Sensitivity Index to human pressure. Finally, a total Sensitivity Index considering both natural processes and human pressure is obtained, and sites divided into three sensitive groups. The results can be useful to limit and prevent environmental degradation linked to natural processes and tourism development, and also to suggest measures to improve the scenic value of investigated sites and their sustainable usage. The method was tested for 29 sites of great scenic quality along the Mediterranean coast of Andalusia, Spain.

Countries
Italy, Spain, Morocco
Keywords

tourism pressure, Water supply for domestic and industrial purposes, Erodibility index, Hydraulic engineering, landscape, sustainability, coastal management, dune, beach, TC1-978, TD201-500, Andalusia

Powered by OpenAIRE graph
Found an issue? Give us feedback