
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Water, Energy, and Emissions Nexus: Effect of Inflows in Urban Drainage Systems

doi: 10.3390/w14060868
The urban water sector significantly contributes to energy consumption and greenhouse gas (GHG) emissions. Detailed assessment of the wastewater system input provides opportunities for improving the water, energy, and emissions nexus. The inflow of water not requiring treatment into wastewater systems is acknowledged worldwide. These undue inflows can increase the footprint of these systems. Together with flooding and discharges, monitoring of undue inflows is not a common practice in water utilities. Three levels of analysis are proposed to assess the magnitude of the impact of undue inflows in the water–energy–greenhouse gas (W-E-G) emissions nexus: at a national level, calculation of performance indicators using yearly data; at the utility level, performance indicators calculations using yearly, monthly, and sub-daily data; at the subsystem level, calculations using mathematical modeling. Results show the implications of undue inflows on energy and GHG emissions, including the effect of flooding and discharges. The importance of undue inflows in the W-E-G nexus is sustained by the results of three case studies in Portugal. Each level of analysis is tailored to the information available, allowing a step-by-step understanding of the relationship between water, energy consumption, and emissions of the urban drainage inflows.
- University of Lisbon Portugal
- National Laboratory for Civil Engineering Portugal
- Instituto Superior de Espinho Portugal
Water supply for domestic and industrial purposes, drainage systems; energy consumption; performance assessment; undue inflows; wastewater; water–energy–emissions nexus, undue inflows, Hydraulic engineering, energy consumption, drainage systems, performance assessment, TC1-978, wastewater, TD201-500, water–energy–emissions nexus
Water supply for domestic and industrial purposes, drainage systems; energy consumption; performance assessment; undue inflows; wastewater; water–energy–emissions nexus, undue inflows, Hydraulic engineering, energy consumption, drainage systems, performance assessment, TC1-978, wastewater, TD201-500, water–energy–emissions nexus
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
