
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Agent-Based Modeling Framework for Electric Vehicle Adoption Transition in Indonesia

doi: 10.3390/wevj12020073
Currently, the adoption of electric vehicles (EV) draws much attention, as the environmental issue of reducing carbon emission is increasing worldwide. However, different countries face different challenges during this transition, particularly developing countries. This research aims to create a framework for the transition to EV in Indonesia through Agent-Based Modeling (ABM). The framework is used as the conceptual design for ABM to investigate the effect of agents’ decision-making processes at the microlevel into the number of adopted EV at the macrolevel. The cluster analysis is equipped to determine the agents’ characteristics based on the categories of the innovation adopters. There are 11 significant variables and four respondents’ clusters: innovators, early majority, late majority, and the uncategorized one. Moreover, Twitter data analytics are utilized to investigate the information engagement coefficient based on the agents’ location. The agents’ characteristics which emerged from this analysis framework will be used as the fundamental for investigating the effect of agents’ specific characteristics and their interaction through ABM for further research. It is expected that this framework will enable the discovery of which incentive scheme or critical technical features effectively increase the uptake of EV according to the agents’ specific characteristics.
TA1001-1280, sustainable innovation, socio-technological transition, innovation diffusion theory, TK1-9971, Transportation engineering, agent-based modeling framework, electric vehicle adoption, Electrical engineering. Electronics. Nuclear engineering, multi-level perspective, cluster analysis
TA1001-1280, sustainable innovation, socio-technological transition, innovation diffusion theory, TK1-9971, Transportation engineering, agent-based modeling framework, electric vehicle adoption, Electrical engineering. Electronics. Nuclear engineering, multi-level perspective, cluster analysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
