
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Parametric Predictions for Pure Electric Vehicles

doi: 10.3390/wevj12040257
Demand for pure electric vehicles has been found to be increasing over the years. This has necessitated the development of a model that would serve as a predicting machine for manufacturing different types of pure electric vehicles. Direct Artificial Neural Network approach was used for predictions of nine different parameters commonly found in pure electric cars. Predictions were found to be of high degree of accuracy while using unit and overall model errors as the basis of performance measurement. The mean absolute error, mean square error and root mean square error of the model were 0.109, 0.218 and 0.467, respectively, when the combined electric charge consumption was used for modeling. For the model formation, using the same variable, the losses for the training and testing were 3.9132 × 10−6 and 9.698 × 10−7, respectively. The model was also evaluated using redefined datasets. The developed model can be used by manufacturers and engineers to simulate future designs when certain parameters are given.
- University of Regina Canada
- University of Regina Canada
model, TA1001-1280, datasets, variables, prediction, TK1-9971, Transportation engineering, pure electric vehicles; prediction; artificial neural networks; model; variables; datasets, Electrical engineering. Electronics. Nuclear engineering, artificial neural networks, pure electric vehicles
model, TA1001-1280, datasets, variables, prediction, TK1-9971, Transportation engineering, pure electric vehicles; prediction; artificial neural networks; model; variables; datasets, Electrical engineering. Electronics. Nuclear engineering, artificial neural networks, pure electric vehicles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
