
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimized Longitudinal and Lateral Control Strategy of Intelligent Vehicles Based on Adaptive Sliding Mode Control

doi: 10.3390/wevj15090387
To improve the tracking accuracy and robustness of the path-tracking control model for intelligent vehicles under longitudinal and lateral coupling constraints, this paper utilizes the Kalman filter algorithm to design a longitudinal and lateral coordinated control (LLCC) strategy optimized by adaptive sliding mode control (ASMC). First, a three-degree-of-freedom (3-DOF) vehicle dynamics model was established. Next, under the fuzzy adaptive Unscented Kalman filter (UKF) theory, the vehicle state parameter estimation and road adhesion coefficient (RAC) observer were designed to estimate vehicle speed (VS), yaw rate (YR), sideslip angle (SA), and RAC. Then, a layered control concept was adopted to design the path-tracking controller, with a target VS, YR, and SA as control objectives. An upper-level adaptive sliding mode controller was designed using RBF neural networks, while a lower-level tire force distribution controller was designed using distributed sequential quadratic programming (DSQP) to obtain an optimal tire driving force. Finally, the control strategy was validated using Carsim and Matlab/Simulink software under different road adhesion coefficients and speeds. The findings indicate that the optimized control strategy is capable of adaptively adjusting control parameters to accommodate various complex conditions, enhancing the tracking precision and robustness of vehicles even further.
- Hubei University of Arts and Science China (People's Republic of)
RBF neural network, Transportation engineering, TA1001-1280, intelligent vehicles, longitudinal and lateral coordinated control, Electrical engineering. Electronics. Nuclear engineering, adaptive sliding mode control, TK1-9971
RBF neural network, Transportation engineering, TA1001-1280, intelligent vehicles, longitudinal and lateral coordinated control, Electrical engineering. Electronics. Nuclear engineering, adaptive sliding mode control, TK1-9971
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
