Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Tellus: Series B, Ch...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Tellus: Series B, Chemical and Physical Meteorology
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Revised eddy covariance flux calculation methodologies – effect on urban energy balance

Authors: Nordbo, Annika; Jarvi, Leena; Vesala, Timo;

Revised eddy covariance flux calculation methodologies – effect on urban energy balance

Abstract

Eddy covariance (EC) measurements of turbulent fluxes of momentum, sensible heat and latent heat – in addition to net radiation measurements – were conducted for three consecutive years in an urban environment: Helsinki, Finland. The aims were to: (1) quantify the detection limit and random uncertainty of turbulent fluxes, (2) assess the systematic error caused by EC calculation-procedure choices on the energy balance residual and (3) report the energy balance of the world's northernmost urban flux station. The mean detection limits were about 10% of the observed flux, and the random uncertainty was 9–16%. Of all fluxes, the latent heat flux – as measured with a closed-path gas analyser – was most prone to systematic calculation errors due to water vapour interactions with tube walls: using a lag window that is too small can cause a 15% lack of data (due to the dependency of lag time on relative humidity) and omitting spectral corrections can cause on average a 26% underestimation of the flux. The systematic errors in EC calculation propagate into the energy balance residual and can be larger than the residual itself: for example, omitting spectral corrections overestimates the residual by 13% or 18% on average, depending on the analyser.Keywords: eddy covariance; urban; energy balance; flux uncertainty; flux error(Published: 19 April 2012)Citation: Tellus B 2012, 64, 18184, http://dx.doi.org/10.3402/tellusb.v64i0.18184

Country
Finland
Keywords

FREQUENCY-RESPONSE CORRECTIONS, flux error, QUALITY-CONTROL, SONIC ANEMOMETER, eddy covariance, ANTHROPOGENIC HEAT, CORRELATION SYSTEMS, CENTRAL-EUROPEAN CITY, SURFACE-ATMOSPHERE INTERACTIONS, CO2 FLUXES, flux uncertainty, OPEN-PATH, energy balance, eddy covariance; urban; energy balance; flux uncertainty; flux error, Physical sciences, WATER-VAPOR, urban

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
Green
gold