
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Over 20 years of observations in the boreal forest reveal a decreasing trend of atmospheric new particle formation
doi: 10.34726/6739
handle: 10138/577862
New particle formation (NPF) events substantially contribute to the number concentration of atmospheric particles and cloud condensation nuclei (CCN) which can further influence radiative balance and Earth's climate. Many short-term studies have found that sulfuric acid (H2 SO4) and highly oxygenated organic molecules (HOM) are critical compounds in the early steps of NPF. However, it is not fully understood how NPF intensity and frequency respond to global warming and declining anthropogenic sulfur dioxide (SO2) emissions, affecting HOM and H2 SO4 formation, respectively. Here, we report the results of long-term (over 20 years) datasets collected at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) II (Hyytiälä, Finland). Owing to the significant contribution of HOM in the initial and subsequent particle formation and growth, we have derived a HOM proxy for conducting the long-term trend analysis. Measurement results together with modelled proxies reveal the declining trends of SO2, H2 SO4, Condensation Sink (CS), NPF frequency and particle formation rate (J3) along with increasing trends of monoterpenes and HOM.
Peer reviewed
- University of Helsinki Finland
Physical sciences, Environmental sciences, climate change, long-term trends, Forestry, boreal forest, New particle formation, aerosols
Physical sciences, Environmental sciences, climate change, long-term trends, Forestry, boreal forest, New particle formation, aerosols
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
