Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.34726/67...
Article . 2024
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Over 20 years of observations in the boreal forest reveal a decreasing trend of atmospheric new particle formation

Authors: Li, Xinyang; Li, Haiyan; Yao, Lei; Stolzenburg, Dominik Marco; Sarnela, Nina; Vettikkat, Lejish; Wollesen de Jonge, Robin; +15 Authors

Over 20 years of observations in the boreal forest reveal a decreasing trend of atmospheric new particle formation

Abstract

New particle formation (NPF) events substantially contribute to the number concentration of atmospheric particles and cloud condensation nuclei (CCN) which can further influence radiative balance and Earth's climate. Many short-term studies have found that sulfuric acid (H2 SO4) and highly oxygenated organic molecules (HOM) are critical compounds in the early steps of NPF. However, it is not fully understood how NPF intensity and frequency respond to global warming and declining anthropogenic sulfur dioxide (SO2) emissions, affecting HOM and H2 SO4 formation, respectively. Here, we report the results of long-term (over 20 years) datasets collected at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) II (Hyytiälä, Finland). Owing to the significant contribution of HOM in the initial and subsequent particle formation and growth, we have derived a HOM proxy for conducting the long-term trend analysis. Measurement results together with modelled proxies reveal the declining trends of SO2, H2 SO4, Condensation Sink (CS), NPF frequency and particle formation rate (J3) along with increasing trends of monoterpenes and HOM.

Peer reviewed

Country
Finland
Related Organizations
Keywords

Physical sciences, Environmental sciences, climate change, long-term trends, Forestry, boreal forest, New particle formation, aerosols

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research