Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Modern Po...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.35833/mpce....
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact Assessment and Mitigation Techniques for High Penetration Levels of Renewable Energy Sources in Distribution Networks: Voltage-control Perspective

Authors: Tarek H. M. EL-Fouly; Dave Turcotte; Ahmed S. A. Awad;

Impact Assessment and Mitigation Techniques for High Penetration Levels of Renewable Energy Sources in Distribution Networks: Voltage-control Perspective

Abstract

The integration of renewable distributed generation (RDG) into distribution networks is promising and increasing nowadays. However, high penetration levels of distributed generation (DG) are often limited as they may have an adverse effect on the operation of distribution networks. One of the operation challenges is the interaction between DG and voltage-control equipment, e. g., an under-load tap changer (ULTC), which is basically designed to compensate for voltage changes caused by slow load variations. The integration of variable DGs leads to rapid voltage fluctuations, which can negatively affect the tap operation of ULTC. This paper investigates the impact of high penetration levels of RDG on the tap operation of ULTC in distribution networks through simulations. Various mitigation techniques that can alleviate this impact are also examined. Among these techniques, constant power-factor mode is regarded as the best trade-off between the simplicity and effectiveness of minimizing the number of tap operations. Simulations are performed on a Canadian benchmark rural distribution feeder using OpenDSS software.

Keywords

Renewable energy, TK1001-1841, TJ807-830, Renewable energy sources, load tap changer, Production of electric energy or power. Powerplants. Central stations, distributed generation (DG), voltage regulator, distribution network

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Top 10%
gold