
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Bi-level Coordinated Planning of Active Distribution Network Considering Demand Response Resources and Severely Restricted Scenarios

Due to the uncertainty and fluctuation of distributed generation (DG) and load, the operation of active distribution network (ADN) is affected by multi-dimension factors which are described by massive operation scenarios. Efficient and accurate screening of severely restricted scenarios (SRSs) has become a new challenge in ADN planning. In this paper, a novel bi-level coordinated planning model which combines the short-time-scale operation problem with the long-time-scale planning problem is proposed. At the upper level, the demand response (DR) resource, an effective non-component planning resource characterized by low capacity price, high energy price, and short contract term, is co-optimized with the configuration of lines and energy storage systems (ESSs) to achieve the economic trade-off between the investment cost and the operation cost under SRSs. At the lower level, with the planning scheme obtained from the upper level, massive operation problems are optimized to minimize the daily operation cost; and the SRSs are provided to the upper level through a shadow-price-based scenario screening method, which simulates the planning information (i.e., the restricted degrees of operation scenarios) feedback process from ADN operators to ADN planners. Case studies on a 62-node distribution system in Jianshan New District, Zhejiang Province, China, illustrate the effectiveness of the proposed bi-level coordinated planning model considering DR resources and SRSs.
- Zhejiang Ocean University China (People's Republic of)
- Zhejiang Ocean University China (People's Republic of)
- Electric Power Research Institute United States
- Electric Power Research Institute United States
TK1001-1841, shadow price, TJ807-830, severely restricted scenario screening, demand response resource, Active distribution network, Renewable energy sources, Production of electric energy or power. Powerplants. Central stations, bi-level coordinated planning
TK1001-1841, shadow price, TJ807-830, severely restricted scenario screening, demand response resource, Active distribution network, Renewable energy sources, Production of electric energy or power. Powerplants. Central stations, bi-level coordinated planning
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
