Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Halarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Conference object . 2023
Data sources: Hal
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Descartes
Conference object . 2023
Data sources: HAL Descartes
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of non-isotropic blockage on a tidal turbine modeled with the Actuator-Line method

Authors: Mascrier, Enzo; Zilic de Arcos, Federico; Pinon, Grégory;

Effects of non-isotropic blockage on a tidal turbine modeled with the Actuator-Line method

Abstract

Blockage effects are a consequence of the interaction between a body and the surrounding boundaries in a constrained flow. For the case of tidal rotors, global blockage (β) is usually defined bythe ratio between the swept area of the rotor and the cross-sectional area of a channel. Increasingblockage tends to increase the limits of power extraction (Garrett and Cummins, 2007), as well asthrust on a rotor through an attendant increase of through-rotor mass flow. While these observations have been studied and demonstrated for isotropic blockage effects (e.g., Zilic de Arcos et al.2020, Bahaj 2007 , Mikkelsen 2002), questions remain regarding the validity of such assumptionsfor non-isotropic blockage in channels with, e.g., rectangular cross-sections with varying aspectratios. In this work, we will use CFD simulations to analyze the effect of non-isotropic blockage on atidal rotor. The study aims to explore these effects using an Actuator-Line representation of anaxial-flow rotor, simulated under different blockage ratios (1 %, 5 %, 10%, and 19.7 %), aspectratios (0.25, 0.5, 0.75, and 1), and tip speed ratios (4, 5, 6, and 7). A total of 64 cases will beconsidered. For each simulated case, the power, thrust, and spanwise force distributions will beextracted as functions of time, and used to understand the effect of blockage on the performanceof tidal rotors. Our preliminary results, in agreement with existing literature, indicate that blockage affectswake development, as seen in Figure , along with power and thrust. These results, for a constantaspect ratio, show power increases up to 26 % for a blockage of 20 %. The bulk of the simulationmatrix, including the different aspect ratios, is currently under production and is expected to beready before the paper submission deadline. ReferencesGarrett, C., Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of fluidmechanics, 588, 243-251.Zilic de Arcos, F., Tampier, G., Vogel, C. R. (2020). Numerical analysis of blockage correctionmethods for tidal turbines. Journal of Ocean Engineering and Marine Energy, 6, 183-197Bahaj, A. S., Molland, A. F., Chaplin, J. R., Batten, W. M. J. (2007). Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitationtunnel and a towing tank. Renewable energy, 32(3), 407-426.Mikkelsen, R., Sørensen, J. N. (2002). Modelling of wind turbine blockage. In 15th IEAsymposium on the aerodynamics of wind turbines, FOI Swedish Defence Research Agency.

Country
France
Keywords

Tidal Energy Anisotropic Blockage Actuator Line CFD, Actuator Line, [PHYS.MECA.MEFL] Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph], [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph], CFD, Tidal Energy, Anisotropic Blockage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research