
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analyzing JWST/NIRSpec Hydrogen Line Detections at TWA 27B: Constraining Accretion Properties and Geometry

handle: 10900/159561
Abstract Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited. Recent JWST/NIRSpec observations have detected Paschen and Brackett hydrogen lines at TWA 27 B (2M1207b). Although classified as a planetary- mass companison (PMC) rather than a planet due to its large mass ratio to the central star, TWA 27 B’s hydrogen line emissions are expected to be same as the planetary one, given its small mass (≈5M J). We aim to constrain the accretion properties and accretion geometry of TWA 27 B, contributing to our understanding of hydrogen-line emission mechanisms common to both PMCs and planets. We conduct spectral fitting of four bright hydrogen lines (Pa-α, Pa-β, Pa-γ, Pa-δ) with an accretion-shock emission model tailored for forming planets. We estimate the mass accretion rate at M ̇ ≈ 3 × 10 − 9 M J yr − 1 with our fiducial parameters, though this is subject to an uncertainty of up to factor of ten. Our analysis also indicates a dense accretion flow, n ≳ 1013 cm−3 just before the shock, implying a small accretion-shock filling factor f f on the planetary surface (f f ≲ 5 × 10−4). This finding suggests that magnetospheric accretion is occurring at TWA 27 B. Additionally, we carry out a comparative analysis of hydrogen-line emission color to identify the emission mechanism, but the associated uncertainties proved too large for definitive conclusions. This underscores the need for further high-precision observational studies to elucidate these emission mechanisms fully.
- Peking University China (People's Republic of)
- Max Planck Society Germany
- National Institutes of Natural Sciences Japan
- The Graduate University for Advanced Studies, SOKENDAI Japan
- Max Planck Institute for Astronomy Germany
Planet formation, Earth and Planetary Astrophysics (astro-ph.EP), Accretion, Astronomy, Extrasolar gaseous giant planets, FOS: Physical sciences, QB1-991, Physik (inkl. Astronomie), 530, 520, Exoplanet formation, H I line emission, Spectral energy distribution, Astrophysics - Earth and Planetary Astrophysics
Planet formation, Earth and Planetary Astrophysics (astro-ph.EP), Accretion, Astronomy, Extrasolar gaseous giant planets, FOS: Physical sciences, QB1-991, Physik (inkl. Astronomie), 530, 520, Exoplanet formation, H I line emission, Spectral energy distribution, Astrophysics - Earth and Planetary Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
