Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-IN2P3 (Institut ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-UPMC
Article . 2022
Data sources: HAL-UPMC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Descartes
Article . 2022
Data sources: HAL Descartes
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2022
Data sources: HAL-INSU
Digital.CSIC
Article . 2022 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

First Combined Study on Lorentz Invariance Violation from Observations of Energy-dependent Time Delays from Multiple-type Gamma-Ray Sources. I. Motivation, Method Description, and Validation through Simulations of H.E.S.S., MAGIC, and VERITAS Data Sets

Authors: Julien Bolmont; Sami Caroff; Markus Gaug; Alasdair Gent; Agnieszka Jacholkowska; Daniel Kerszberg; Christelle Levy; +7 Authors
APC: 1,321.61 EUR

First Combined Study on Lorentz Invariance Violation from Observations of Energy-dependent Time Delays from Multiple-type Gamma-Ray Sources. I. Motivation, Method Description, and Validation through Simulations of H.E.S.S., MAGIC, and VERITAS Data Sets

Abstract

Abstract Gamma-ray astronomy has become one of the main experimental ways to test the modified dispersion relations (MDRs) of photons in vacuum, obtained in some attempts to formulate a theory of quantum gravity. The MDRs in use imply time delays that depend on the energy and that increase with distance following some function of redshift. The use of transient, or variable, distant and highly energetic sources already allows us to set stringent limits on the energy scale related to this phenomenon, usually thought to be of the order of the Planck energy, but robust conclusions on the existence of MDR-related propagation effects still require the analysis of a large population of sources. In order to gather the biggest sample of sources possible for MDR searches at teraelectronvolt energies, the H.E.S.S., MAGIC, and VERITAS collaborations enacted a joint task force to combine all their relevant data to constrain the quantum gravity energy scale. In the present article, the likelihood method used to combine the data and provide a common limit is described in detail and tested through simulations of recorded data sets for a gamma-ray burst, three flaring active galactic nuclei, and two pulsars. Statistical and systematic errors are assessed and included in the likelihood as nuisance parameters. In addition, a comparison of two different formalisms for distance dependence of the time lags is performed for the first time. In a second article, to appear later, the method will be applied to all relevant data from the three experiments.

Countries
France, Spain
Keywords

Planck, dispersion relation, gamma ray: burst, 530, energy dependence, HESS, propagation, AGN, pulsar, [PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc], photon, time delay, redshift, MAGIC, 520, quantum gravity, [PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc], VERITAS, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], statistical

Powered by OpenAIRE graph
Found an issue? Give us feedback
Funded by
Related to Research communities
Energy Research