

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Exploring Changes in Quasar Spectral Energy Distributions across C iv Parameter Space

Abstract We examine the UV/X-ray properties of 1378 quasars in order to link empirical correlations to theoretical models of the physical mechanisms dominating quasars as a function of mass and accretion rate. The clarity of these correlations is improved when (1) using C iv broad emission line equivalent width (EQW) and blueshift (relative to systemic) values calculated from high signal-to-noise ratio reconstructions of optical/UV spectra and (2) removing quasars expected to be absorbed based on their UV/X-ray spectral slopes. In addition to using the traditional C iv parameter space measures of C iv EQW and blueshift, we define a “C iv ∥ distance” along a best-fit polynomial curve that incorporates information from both C iv parameters. We find that the C iv ∥ distance is linearly correlated with both the optical-to-X-ray slope, α ox, and broad-line He ii EQW, which are known spectral energy distribution indicators, but does not require X-ray or high spectral resolution UV observations to compute. The C iv ∥ distance may be a better indicator of the mass-weighted accretion rate, parameterized by L/L Edd, than the C iv EQW or blueshift alone, as those relationships are known to break down at the extrema. Conversely, there is only a weak correlation with the X-ray energy index (Γ), an alternate L/L Edd indicator. We find no X-ray or optical trends in the direction perpendicular to the C iv distance that could be used to reveal differences in accretion disk, wind, or corona structure that could be widening the C iv EQW–blueshift distribution. A different parameter (such as metallicity) not traced by these data must come into play.
- United States Naval Academy United States
- University of Edinburgh United Kingdom
- United States Naval Academy United States
- University of Cambridge United Kingdom
- Institute for Astronomy University of Edinburgh Royal Observatory United Kingdom
Astrophysics and Astronomy, x-ray active galactic nuclei, 5101 Astronomical Sciences, Physics, quasars, black hole physics, 51 Physical Sciences, spectral energy distribution, 520
Astrophysics and Astronomy, x-ray active galactic nuclei, 5101 Astronomical Sciences, Physics, quasars, black hole physics, 51 Physical Sciences, spectral energy distribution, 520
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 1 download downloads 15 - 1views15downloads
Data source Views Downloads Apollo 1 15


