Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Conference object . 2014
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Conference object . 2014
License: CC BY
GFZ Data Services
Other literature type . 2014
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-temporal Crop Surface Models derived from terrestrial laser scanning for accurate plant height measurement and biomass estimation of barley

Authors: Tilly, Nora; Hoffmeister, Dirk; Aasen, Helge; Brands, Jonas; Bareth, Georg;

Multi-temporal Crop Surface Models derived from terrestrial laser scanning for accurate plant height measurement and biomass estimation of barley

Abstract

Research in the field of precision agriculture is becoming increasingly important due to the growing world population whilst area for cultivation remains constant or declines. In this context, methods of monitoring in?season plant development with high resolution and accuracy are necessary. Studies show that terrestrial laser scanning (TLS) can be applied to capture small objects like crops. In this contribution, the results of multi-temporal field campaigns with the terrestrial laser scanner Riegl LMS-Z420i are shown. Four surveys were carried out in the growing period 2012 on a field experiment where various barley varieties were cultivated in small-scale plots. In order to measure the plant height above ground, the TLS-derived point clouds are interpolated to generate Crop Surface Models with a very high resolution of 1 cm. For all campaigns, a common reference surface, representing the Digital Elevation Model was used to monitor plant height in the investigated period. Manual plant height measurements were carried out to verify the results. The very high coefficients of determination (R² = 0.89) between both measurement methods show the applicability of the approach presented. Furthermore, destructive biomass sampling was performed to investigate the relation to plant height. Biomass is an important parameter for evaluating the actual crop status, but non-destructive methods of directly measuring crop biomass do not exist. Hence, other parameters like reflectance are considered. The focus of this study is on non-destructive measurements of plant height. The high coefficients of determination between plant height and fresh as well as dry biomass (R² = 0.80, R² = 0.77) support the usability of plant height as a predictor. The study presented here demonstrates the applicability of TLS in monitoring plant height development with a very high spatial resolution.

Proceedings of the Workshop on UAV-based Remote Sensing Methods for Monitoring Vegetation

Kölner geographische Arbeiten, 94

ISSN:0454-1294

Country
Switzerland
Related Organizations
Keywords

Terrestrial Laser Scanning, Multi-Temporal, Agriculture, Agriculture; Biomass; Crop/s; Multi-Temporal; Terrestrial Laser Scanning; 550 Earth sciences, 550 Earth sciences, Biomass, Crop/s

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green