
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Molten salt pyrolysis of milled beech wood using an electrostatic precipitator for oil collection

A tubular electrostatic precipitator (ESP) was designed and tested for collection of pyrolysis oil in molten salt pyrolysis of milled beech wood (0.5-2 mm). The voltage-current (V-I) characteristics were studied, showing most stable performance of the ESP when N2 was utilized as inert gas. The pyrolysis experiments were carried out in FLiNaK and (LiNaK)2CO3 over the temperature range of 450-600 ℃. The highest yields of pyrolysis oil were achieved in FLiNaK, with a maximum of 34.2 wt% at 500 ℃, followed by a decrease with increasing reactor temperature. The temperature had nearly no effect on the oil yield for pyrolysis in (LiNaK)2CO3 (19.0-22.5 wt%). Possible hydration reactions and formation of HF gas during FLiNaK pyrolysis were investigated by simulations (HSC Chemistry software) and measurements of the outlet gas (FTIR), but no significant amounts of HF were detected.
TK1001-1841, beech wood, molten salts, TJ807-830, pyrolysis, Renewable energy sources, Production of electric energy or power. Powerplants. Central stations, precipitator, electrostatic
TK1001-1841, beech wood, molten salts, TJ807-830, pyrolysis, Renewable energy sources, Production of electric energy or power. Powerplants. Central stations, precipitator, electrostatic
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
