
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Validation of thermal imaging as a tool for failure mode detection development

The development of tools for examining and predicting battery performance represents a significant challenge for the field of monitoring, as it is dependent on nondestructive evaluation (NDE) techniques to provide key behavior descriptors. As the thermal behavior of a battery impacts its internal chemistry, thermal imaging represents an in operando NDE technique capable of providing valuable information to facilitate an understanding of a battery’s overall electrochemical performance. However, previous attempts to directly link thermal imaging analyses to internal chemistry have—so far—proved challenging due in part to the complexities of the relationships between the thermal and the electrochemical battery behavior. In this article, we propose and describe a more refined approach in which correlation between thermal imaging results and internal battery reactions is first established, providing a foundation for determining descriptors for developing early fault detection. Here, this approach is experimentally validated, through the use of a combination of electrochemical, in operando infrared thermography, and post-mortem analyses, which were undertaken in order to characterize selected lead-acid batteries. These results—and their implications for early fault detection—are discussed, along with the challenges facing in operando battery thermal imaging, laying a foundation for developing the understanding vital to future iterative design improvements.
postmortem, early fault detection, TK1001-1841, TJ807-830, failure modes, Renewable energy sources, Production of electric energy or power. Powerplants. Central stations, infrared thermography, lead acid batteries
postmortem, early fault detection, TK1001-1841, TJ807-830, failure modes, Renewable energy sources, Production of electric energy or power. Powerplants. Central stations, infrared thermography, lead acid batteries
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
