Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIMS Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Energy
Article . 2025 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Energy
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Smart thermal management of photovoltaic systems: Innovative strategies

Authors: Kaovinath Appalasamy; R Mamat; Sudhakar Kumarasamy;

Smart thermal management of photovoltaic systems: Innovative strategies

Abstract

The efficiency of photovoltaic (PV) panels is significantly affected by environmental factors such as solar irradiance, wind speed, humidity, dust accumulation, shading, and surface temperature, with thermal buildup being the primary cause of efficiency degradation. In this review, we examined various cooling techniques to mitigate heat accumulation and enhance PV panel performance. A comprehensive analysis of active, passive, and hybrid cooling strategies is presented, including heat pipe-based cooling, heat sinks, holographic films, nanofluids, phase change materials (PCM), thermoelectric, biomaterial-based, and hybrid cooling systems. The effectiveness of these techniques in reducing surface temperature and improving electrical efficiency was assessed. Notably, heat pipe cooling and hybrid PCM-thermoelectric systems demonstrated the most promising improvements, with some methods achieving temperature reductions exceeding 40 ℃ and efficiency enhancements over 15%. Future research directions include developing advanced nanofluid formulations, optimizing the design of heat pipes and heat sinks, integrating multi-functional coatings, and enhancing the real-world durability of cooling materials for inventing innovative, sustainable, and eco-friendly cooling systems. By providing a structured assessment of emerging PV cooling techniques, this study is a valuable resource for researchers and engineers striving to improve solar energy efficiency, reduce thermal losses, and advance the sustainability of photovoltaic technologies.

Keywords

photovoltaic module, temperature reduction, TK1001-1841, Production of electric energy or power. Powerplants. Central stations, cooling system, panel efficiency, TJ807-830, electrical efficiency, performance improvement, Renewable energy sources

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research