Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Mechanics an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Mechanics and Materials
Article . 2014 . Peer-reviewed
License: Trans Tech Publications Copyright and Content Usage Policy
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design of a Bubbling Fluidized Bed Gasifier for the Thermochemical Conversion of Oil Palm Empty Fruit Bunch Briquette

Authors: Ramli Mat; Anwar Johari; Bemgba Bevan Nyakuma; Asmadi Ali; Mohd Johari Kamaruddin; Arshad Ahmad; Tuan Amran Tuan Abdullah;

Design of a Bubbling Fluidized Bed Gasifier for the Thermochemical Conversion of Oil Palm Empty Fruit Bunch Briquette

Abstract

This paper is focused on the design of a bubbling fluidized bed gasifier (BFBG) for EFB briquette gasification. The annual production of palm oil in Malaysia generates large quantities of lignocellulosic biomass which can be converted into clean, sustainable energy for the future. Hence, the prospect of valorising palm waste using biomass gasifiers presents a viable option for energy production. The fluidized bed gasifier (FBG) is considered the most suitable reactor for biomass gasification due excellent mixing, efficient heat temperature control and tolerance for fuels. Consequently, the proposed design of the bubbling fluidized bed gasifier for EFB briquette gasification will consist of three main parts; feeding zone, gasification zone and the effluent gas zone for syngas production. The results of feedstock physicochemical properties such as bulk density, particle size, the bed hydrodynamic and fluidization parameters for gasification used in the design of the gasifier are presented in this paper.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average