
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical Exploration of Cattaneo-Christov Heat Flux and Mass Transfer in Magnetohydrodynamic Flow over Various Geometries

The flow geometry plays a major role in heat and mass transfer processes of many engineering and industrial applications.In the present paper, we examined the combined effects of Cattaneo-Christov heat flux, external magnetic field, chemical reaction, heat source and buoyancy forces on the flow of an incompressible electrically conducting fluid with heat and mass transfer over three different geometries (cone, wedge and a plate). The nonlinear governing equations are obtained and tackled numerically using shooting technique with Runge-Kutta-Felhberg integration scheme. Numerical results are presented graphically and discussed quantitatively. It is found that the thermal boundary layer is highly effective on the flow over a wedge when compared with the other two geometries (plate and a cone).
- Stellenbosch University South Africa
- Federal University of Technology Nigeria
- Vellore Institute of Technology University India
- Vellore Institute of Technology University India
- VIT-AP University India
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
