
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
High Efficiency Large-Area a-SiGe:H and nc-Si:H Based Multi-Junction Solar Cells: A Comparative Study
We have attained superior quality a-SiGe:H and nc-Si:H materials deposited at high rate, ~0.6 nm/s for a-SiGe:H and 1-1.5 nm/s for nc-Si:H, and achieved improved multi-junction solar cell performance. For a-SiGe:H based cells, we have focused our effort on further improving the a-SiGe:H film quality by carefully optimizing process parameters, particularly with Ge content and profile, hydrogen dilution, deposition pressure and substrate-tocathode distance, to fabricate a-SiGe:H films with low defect density and good stability. For nc-Si:H based solar cells, we have mainly worked on improving the spatial uniformity and homogeneous properties for nc-Si:H deposition, and on optimizing the plasma process and selecting species to deposit further improved nc-Si:H. We attained 10.1% and 11.2% stabilized efficiencies, respectively, for large-area (≥400 cm2) encapsulated a-Si:H/a-SiGe:H/a-SiGe:H and a- Si:H/nc-Si:H/nc-Si:H triple-junction cells. Comparison between a-SiGe:H and nc-Si:H based technologies and future improvement will be presented.
25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6-10 September 2010, Valencia, Spain; 2783-2787
- Xi'an Jiaotong University China (People's Republic of)
- Xi’an Jiaotong-Liverpool University China (People's Republic of)
Thin Film Solar Cells, Amorphous and Microcrystalline Silicon Solar Cells
Thin Film Solar Cells, Amorphous and Microcrystalline Silicon Solar Cells
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
