

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Computational Fluid Dynamics (CFD) Analysis of Lubricant Oil Tank Sloshing of a High-Performance Car under Racetrack Maneuvers

handle: 11380/1270197
The paper proposes a methodology to perform sloshing analyses through multidimensional Computational Fluid Dynamics (CFD), with particular focus on a lubricant tank of a high-performance sports car. Lubricant tanks are usually fed by a mixture of oil and air, which makes Volume of Fluid (VoF) models unsuitable for this kind of simulation. Hence, a different approach based on a Eulerian MultiPhase (EMP) model is investigated and adopted. In contrast to the VoF approach, which is the most consolidated technique to handle the numerical analysis of sloshing problems, the EMP accounts for interactions between liquid and gaseous phases, such as mixing and separation. It also reduces numerical constraints on time-step and mesh size. EMP is therefore applied to the analysis of a sports car lubricant tank where mist and foam formation and subsequent phase separation are of primary importance. Comparison between the EMP and VoF approach is performed on cases of increasing complexity. Firstly, a rectangular tank with internal baffles and under pitch oscillations, for which experimental measurements are available, is analyzed. The EMP approach shows improved responsiveness in representing both phase mixing and separation. Secondly, a current production lubricant oil tank, for which experimental test-rig measurements of foam percentage shortly upstream the feeding pump are available, confirms the ability of the EMP approach to quantitatively estimate foam formation. Thirdly, the analysis of a current production lubricant oil tank subject to typical racetrack maneuvers is performed. Such final step confirms the ability of the EMP approach to simulate complex interactions between the phases, which largely affect tank and lubricating circuit performance in high-performance sports car applications. Moreover, the EMP approach allows a massive reduction of computational time compared to VoF.
CFD; Eulerian multiphase; Lubricant oil tank; Racetrack maneuvers; Sloshing
CFD; Eulerian multiphase; Lubricant oil tank; Racetrack maneuvers; Sloshing
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 188 - 188views
Data source Views Downloads IRIS UNIMORE - Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia 188 0

