Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
SAE International Journal of Engines
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computational Fluid Dynamics (CFD) Analysis of Lubricant Oil Tank Sloshing of a High-Performance Car under Racetrack Maneuvers

Authors: Fontanesi S.; Olcuire M.; Cicalese G.; Lamberti L.; Pulvirenti F.; Berni F.;

Computational Fluid Dynamics (CFD) Analysis of Lubricant Oil Tank Sloshing of a High-Performance Car under Racetrack Maneuvers

Abstract

The paper proposes a methodology to perform sloshing analyses through multidimensional Computational Fluid Dynamics (CFD), with particular focus on a lubricant tank of a high-performance sports car. Lubricant tanks are usually fed by a mixture of oil and air, which makes Volume of Fluid (VoF) models unsuitable for this kind of simulation. Hence, a different approach based on a Eulerian MultiPhase (EMP) model is investigated and adopted. In contrast to the VoF approach, which is the most consolidated technique to handle the numerical analysis of sloshing problems, the EMP accounts for interactions between liquid and gaseous phases, such as mixing and separation. It also reduces numerical constraints on time-step and mesh size. EMP is therefore applied to the analysis of a sports car lubricant tank where mist and foam formation and subsequent phase separation are of primary importance. Comparison between the EMP and VoF approach is performed on cases of increasing complexity. Firstly, a rectangular tank with internal baffles and under pitch oscillations, for which experimental measurements are available, is analyzed. The EMP approach shows improved responsiveness in representing both phase mixing and separation. Secondly, a current production lubricant oil tank, for which experimental test-rig measurements of foam percentage shortly upstream the feeding pump are available, confirms the ability of the EMP approach to quantitatively estimate foam formation. Thirdly, the analysis of a current production lubricant oil tank subject to typical racetrack maneuvers is performed. Such final step confirms the ability of the EMP approach to simulate complex interactions between the phases, which largely affect tank and lubricating circuit performance in high-performance sports car applications. Moreover, the EMP approach allows a massive reduction of computational time compared to VoF.

Country
Italy
Keywords

CFD; Eulerian multiphase; Lubricant oil tank; Racetrack maneuvers; Sloshing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 188
  • 188
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
2
Average
Average
Average
188