Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterizing Engine Emissions with Spark Efficiency Curves

Authors: Grant Lumsden;

Characterizing Engine Emissions with Spark Efficiency Curves

Abstract

Emissions optimization, particularly for complex engines, relies on developing mathematical correlations or 'Response Surface Models' of engine outputs. There is a clear tradeoff between the complexity of the model and its usefulness for a range of optimization tasks. Several current Sl engine management systems use a 'Spark efficiency curve' to elegantly describe the response of engine torque to spark advance using a prescribed characteristic line that is fitted to a spark sweep with only two degrees of freedom. This provides a powerful method of data reduction. A similar technique has been developed to characterize engine emissions data. A single efficiency curve with only two degrees of freedom can be used to accurately describe the response of, say, hydrocarbon emissions to spark over a wide range of engines and operating conditions. The technique offers similar data reduction advantages for engine management system developers and those optimizing engines using high DoF models. The form and application of the efficiency curves is discussed and examples of application to tasks such as engine emission optimization are discussed.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average