Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
SAE International Journal of Engines
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Guidelines for the Optimization of a Muffler in a Small Two Stroke Engine

Authors: TESTA, FRANCESCO; Gagliardi, Vincenzo; Ferrari, Marco; FONTANESI, Stefano; Bertani, Andrea;

Guidelines for the Optimization of a Muffler in a Small Two Stroke Engine

Abstract

It is well known that 3D CFD simulations can give detailed information about fluid and flow properties in complex 3D domains while 1D CFD simulation can provide important information at a system level, i.e. about the performance of the entire engine. The drawbacks of the two simulation methods are that the former requires high computational cost while the latter is not able to capture complex local 3D features of the flow. Therefore, the two simulation methods are to be seen as complementary, indeed a coupling of the two approaches can benefit from the pros of the two methods while minimizing the cons. In particular, with a multi-scale modeling approach (1D-3D) it is possible to simulate large and complex domains by modeling the complex part with a 3D approach and the rest of the domain with a 1D approach. This paper describes an optimization cycle analysis of the unsteady flow of a single cylinder, two stroke gasoline engine using advanced numerical tools, which are in turn validated by means of experimental measurements. In particular, a 3D model (based on STAR-CD code) of the entire engine and a 1D-3D integrated fluid dynamics model (based on GT-POWER 1D and Converge-LITE 3D codes) is developed and applied for the representation of the geometrical domain and for the prediction of performance and gasdynamics in the whole intake and exhaust systems. The methodology allows users to accurately predict and deeply understand unsteady phenomena in the whole engine and capture the wave motion, which strongly affects the muffler 3D design in small two stroke engines equipped with resonance pipes.

Country
Italy
Keywords

Muffler CFD coupling optimization measurements performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 98
  • 98
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
98