Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Model Approach to the Sizing of an ORC Unit for WHR in Transportation Sector

Authors: DI BATTISTA, DAVIDE; DI BARTOLOMEO, MARCO; VILLANTE, CARLO; CIPOLLONE, Roberto;

A Model Approach to the Sizing of an ORC Unit for WHR in Transportation Sector

Abstract

Internal combustion engines are actually one of the most important source of pollutants and greenhouse gases emissions. In particular, on-the-road transportation sector has taken the environmental challenge of reducing greenhouse gases emissions and worldwide governments set up regulations in order to limit them and fuel consumption from vehicles. Among the several technologies under development, an ORC unit bottomed exhaust gas seems to be very promising, but it still has several complications when it is applied on board of a vehicle (weight, encumbrances, backpressure effect on the engine, safety, reliability). In this paper, a comprehensive mathematical model of an ORC unit bottomed a heavy duty engine, used for commercial vehicle, has been developed. The model is completed with the sizing of the two exchangers involved in the ORC plant: the heat recovery vapor generator (I-ERVG), which affects the backpressure at the engine exhaust, and the condenser, which is realized with the similar technology of a radiator, and it affects vehicle frontal area occupation. Also weights have been calculated. Thanks to the model, a wide analysis of the recoverable power and the exchanger sizing has been performed on the ESC-13 engine working points. For each engine working point the backpressure effect due to the presence of the HRVG has been evaluated and overall ORC unit weight has been estimated. The extra propulsive power related to weight increase has been estimated considering the ETC cycle (which is the correspondent transient cycle of the ESC-13 modes) and it is compared to the ORC mechanical power recovered and the overconsumption due the backpressure effect. A real net power recovered is, therefore, assessed.

Internal combustion engines are actually one of the most important source of pollutants and greenhouse gases emissions. In particular, on-the-road transportation sector has taken the environmental challenge of reducing greenhouse gases emissions and worldwide governments set up regulations in order to limit them and fuel consumption from vehicles. Among the several technologies under development, an ORC unit bottomed exhaust gas seems to be very promising, but it still has several complications when it is applied on board of a vehicle (weight, encumbrances, backpressure effect on the engine, safety, reliability). In this paper, a comprehensive mathematical model of an ORC unit bottomed a heavy duty engine, used for commercial vehicle, has been developed. The model is completed with the sizing of the two exchangers involved in the ORC plant: the heat recovery vapor generator (HRVG), which affects the backpressure at the engine exhaust, and the condenser, which is realized with the similar technology of a radiator, and it affects vehicle frontal area occupation. Also weights have been calculated. Thanks to the model, a wide analysis of the recoverable power and the exchanger sizing has been performed on the ESC-13 engine working points. For each engine working point the backpressure effect due to the presence of the HRVG has been evaluated and overall ORC unit weight has been estimated. The extra propulsive power related to weight increase has been estimated considering the ETC cycle (which is the correspondent transient cycle of the ESC-13 modes) and it is compared to the ORC mechanical power recovered and the overconsumption due the backpressure effect. A real net power recovered is, therefore, assessed.

Country
Italy
Related Organizations
Keywords

WASTE HEAT RECOVERY, ORGANIC RANKINE CYCLE, TRANSPORTATION SECTOR

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%