Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RiuNet
Conference object . 2021
Data sources: RiuNet
https://doi.org/10.4271/2021-0...
Conference object . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine

Authors: Torregrosa, A. J.; Broatch, A.; Olmeda, P.; Aceros, Sebastian;

Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine

Abstract

[EN] In modeling an Internal Combustion Engine, the combustion sub-model plays a critical role in the overall simulation of the engine as it provides the Mass Fraction Burned (MFB). Analytically, the Heat Release Rate (HRR) can be obtained using the Wiebe function, which is nothing more than a mathematical formulation of the MFB. The mentioned function depends on the following four parameters: efficiency parameter, shape factor, crankshaft angle, and duration of the combustion. In this way, the Wiebe function can be adjusted to experimentally measured values of the mass fraction burned at various operating points using a least-squares regression, and thus obtaining specific values for the unknown parameters. Nevertheless, the main drawback of this approach is the requirement of testing the engine at a given engine load/speed condition. Furthermore, the main objective of this study is to propose a predictive model of the Wiebe parameters for any operating point of the tested SI engine. For this purpose, an Artificial Neural Network (ANN) is developed from the experimental data. A criterion was defined to choose the best-trained network. Finally, the Wiebe parameters are estimated with the neural networks for different operating conditions. Moreover, the mass fractions burned generated from the Wiebe functions are compared with the respective experimental values from several operating points measured in the engine test bench. Small differences were found between the estimated and experimental mass fractions burned. Therefore, the effectiveness of the developed ANN model as a prediction tool for the engine MFB is verified.

Country
Spain
Related Organizations
Keywords

MAQUINAS Y MOTORES TERMICOS

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 55
    download downloads 362
  • 55
    views
    362
    downloads
    Data sourceViewsDownloads
    RiuNet55362
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
4
Top 10%
Average
Average
55
362
Green