
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modeling and Design of a PEM Fuel Cell System for Ferry Applications

doi: 10.4271/2023-24-0145
handle: 11589/260980
<div class="section abstract"><div class="htmlview paragraph">The upcoming regulations to achieve zero-emission passenger transport present challenges for designing new ferry powertrains. The proposed work investigates the feasibility of using a Proton Exchange Membrane Fuel Cell (PEMFC) power system to power a long-haul ferry. The paper describes the zero-order cell model as well as the method for estimating cell degradation. The stack modeling, heat balance equations, and auxiliary modeling are also presented. The proposed model enables the simulation of the fuel cell under different operating conditions and includes the use of air or oxygen as an oxidizer. A thermal management strategy for the overall PEMFC system is also proposed. The model was calibrated on the characteristic curves of the PEMFC Ballard FCvelocity™ HD6 (150 kW) and validated by reproducing experimental results. Then, a real load profile of a ferry, as well as the proposed powertrain is considered as case study. The presented results are related to a single daily mission and its deterioration throughout the set mission cycle is finally presented.</div></div>
Energy, Hydrogen, Energy, PEM, Fuel Cell, Ferry Application
Energy, Hydrogen, Energy, PEM, Fuel Cell, Ferry Application
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
