Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 1998
Data sources: IRIS Cnr
https://doi.org/10.4271/982479...
Conference object . 1998 . Peer-reviewed
Data sources: Crossref
CNR ExploRA
Article . 1998
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of the Effect of EGR on Engine Knock

Authors: Diana S; Giglio V; Iorio B; Police G;

Evaluation of the Effect of EGR on Engine Knock

Abstract

The effect of external EGR on knock was evaluated using a CFR engine. Combustion pressure was sampled on a time basis. A band pass filter in the time domain was applied to the pressure cycles. Five knock indices were calculated for each combustion cycle. The problem to quantify knock intensity was focused. At this extent, measurements were carried out on standard iso-octane-n-heptane blends in the test conditions used for the determ of the Motor Method Octane Number (MON). Knock intensity was varied acting on compression ratio. For each index, the conditions of absence of knock were determined using motored cycles. The indices were compared and one of them, showing the lowest C.O.V., was selected for further measurements. The effect of EGR on test fuels having different composition was evaluated varying the compression ratio, at fixed ignition timing. In this way, the same level of detonation, obtained in the absence of EGR, was realized with different amounts of external EGR. Percent variation of compression ratio was used to compare the ability of fuels, having different octane number, to tolerate compression ratio increase in presence of EGR. In particular, the tests were carried out on a matrix of twelve fuels with three levels of EGR. The results show that with all tested fuels the percent increase of compression ratio is strongly dependent on EGR.

Country
Italy
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Average