Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://ora.ox.ac.uk...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://ora.ox.ac.uk/objects/u...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.46855/2020....
Article . 2020 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Motivational Game-Theoretic Approach for Peer-to-Peer Energy Trading in the Smart Grid

Authors: Wayes Tushar; Tapan Kumar Saha; Chau Yuen; Thomas Morstyn; Malcolm D. McCulloch; H. Vincent Poor; Kristin L. Wood;

A Motivational Game-Theoretic Approach for Peer-to-Peer Energy Trading in the Smart Grid

Abstract

Peer-to-peer trading in energy networks is expected to be exclusively conducted by the prosumers of the network with negligible influence from the grid. This raises the critical question: how can enough prosumers be encouraged to participate in peer-to-peer trading so as to make its operation sustainable and beneficial to the overall electricity network? To this end, this paper proposes how a motivational psychology framework can be used effectively to design peer-to-peer energy trading to increase user participation. To do so, first, the state-of-the-art of peer-to-peer energy trading literature is discussed by following a systematic classification, and gaps in existing studies are identified. Second, a motivation psychology framework is introduced, which consists of a number of motivational models that a prosumer needs to satisfy before being convinced to participate in energy trading. Third, a game-theoretic peer-to-peer energy trading scheme is developed, its relevant properties are studied, and it is shown that the coalition among different prosumers is a stable coalition. Fourth, through numerical case studies, it is shown that the proposed model can reduce carbon emissions by 18.38% and 9.82% in a single day in Summer and Winter respectively compared to a feed-in-tariff scheme. The proposed scheme is also shown to reduce the cost of energy up to 118 cents and 87 cents per day in Summer and Winter respectively. Finally, how the outcomes of the scheme satisfy all the motivational psychology models is discussed, which subsequently shows its potential to attract users to participate in energy trading.

7 Figures, 5 Tables, Accepted in Applied Energy

Countries
Australia, United Kingdom
Keywords

2100 Energy, 690, FOS: Computer and information sciences, Monitoring, 2210 Mechanical Engineering, FFR, Computer Science - Networking and Internet Architecture, Computer Science - Computer Science and Game Theory, Civil and Structural Engineering, Networking and Internet Architecture (cs.NI), Policy and Law, Mechanical Engineering, Building and Construction, Management, General Energy, 2215 Building and Construction, 2308 Management, Computer Science and Game Theory (cs.GT)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    314
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
314
Top 0.1%
Top 1%
Top 0.1%
Green
hybrid