Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Isı Bilimi ve Tekniğ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Isı Bilimi ve Tekniği Dergisi
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
OpenMETU
Article . 2020
License: CC BY NC ND
Data sources: OpenMETU
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A CONCISE ANALYTICAL TREATMENT OF ELASTIC RESPONSE OF A COOLING TWO-LAYER SOLID CYLINDER WITH DIFFERENT END AND BOUNDARY CONDITIONS

İKİ KATMANLI DOLU BİR SİLİNDİRİN ELASTİK DAVRANIŞININ FARKLI UÇ VE SINIR KOŞULLARI İÇİN ANALİTİK OLARAK İNCELENMESİ
Authors: Tolga AKIŞ; Ahmet ERASLAN;

A CONCISE ANALYTICAL TREATMENT OF ELASTIC RESPONSE OF A COOLING TWO-LAYER SOLID CYLINDER WITH DIFFERENT END AND BOUNDARY CONDITIONS

Abstract

Analytical models are developed to estimate the transient elastic response of cooling two-layer solid cylinders with different end and boundary conditions. Such cylinders contain two layers that are in perfect contact. The hot assembly loses energy from its surface to either zero ambient by convection or by a prescribed lower surface temperature. In any case, as the cooling takes place slowly, the problem is amenable to use of the uncoupled theory of elasticity. A generalized plane strain solution is derived and then reduced to the state of plane strain by simply setting the axial strain equal to zero. The results of these solutions revealed that the radial and circumferential stresses remain unchanged by end conditions when the boundaries are free. However, in case of plane strain, the axial stress becomes the dominant stress component and it is much larger than that in free ends. Radially constrained boundaries create very large stresses in the assembly but the corresponding stress state is far away from yielding

Country
Turkey
Keywords

Two-layer solid cylinder;Transient heat conduction;Cooling;Thermoelasticity;Generalized plane strain, İki katmanlı dolu silindir, Makine Mühendisliği, Termoelastisite, Soğuma, Two-layer solid cylinder, Zamana bağlı ısı iletimi, Genelleştirilmiş düzlemsel şekil değiştirme, Thermoelasticity, Mechanical Engineering, Transient heat conduction, Generalized plane strain, İki katmanlı dolu silindir;Zamana bağlı ısı iletimi;Soğuma;Termoelastisite;Genelleştirilmiş düzlemsel şekil değiştirme, Cooling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold