
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Co-Combustion of Low Rank Fuels in Power Plants
With an increasing share of regenerative wind and solar energy in electricity supply, the aspect of load flexibility will gain importance, i.e. there is an increasing need for buffer capacities and / or power plants must be able to react more flexibly to changes of the demand. As an alternative or in addition to the new construction of peakload power plants (pump storage systems, gas power plants), load-flexible dust burner technologies can be used in existing incinerators to increase the load flexibility and the fuel flexibility when using especially local regenerative fuel sources. Flexibility of the burner concept means an increase in changing fuel composition and non-stationary operation, which may cause changes of the combustion behavior and, hence, of the emission behavior. Flexibility in fuel sources changes the combustion and emission behavior, too, especially with regard to low rank fuels with high ash contents containing chlorine and alkali species. To control these non-stationary processes in the burner and downstream boiler area for an efficient operation, contact-free optical measurement methods are applied in addition to the measurement systems existing in the furnace chamber and furthermore control methods based on computational intelligence.
Proceedings of the 19th European Biomass Conference and Exhibition, 6-10 June 2011, Berlin, Germany, pp. 1334-1337
info:eu-repo/classification/ddc/660, 660, ddc:660, Chemical engineering, Biomass
info:eu-repo/classification/ddc/660, 660, ddc:660, Chemical engineering, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
