Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Conference object . 2021
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Other literature type . 2021
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.5071/29t...
Conference object . 2021
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Feasibility Study on Anaerobic Digestion of Waste from Dhaka's Fresh Markets

Authors: Voogt, J.A.; Van Groenestijn, J.W.; Schultze-Jena, A.; Mohammed, S.; Taylor, J.;

Feasibility Study on Anaerobic Digestion of Waste from Dhaka's Fresh Markets

Abstract

Effectively collecting and disposing municipal solid waste in Dhaka has become a serious and challenging problem. The principal issues that undermine the city’s waste management measures include limited funds to pay for the daily transportation costs, limited capacity to manage a constant citywide collection effort, and a scarcity of land for the establishment and expansion of landfill sites. Decentralised processing of biodegradable waste of fresh markets by anaerobic digestion is a potential alternative to the current waste disposal system. The feasibility was techno-economically analysed. A conceptual design was set up for a fresh market generating 18 m3 waste per day, representing a medium sized fresh market. The biogas production, the related electricity generation, and required land area were estimated. The techno-economic analyses showed that, compared to the current collection, transport, and landfill costs, the total costs of the anaerobic digestion plant are 24% lower. The transport and landfill costs are strongly reduced. The labour, maintenance, and financing costs of the anaerobic digestion plant are nearly covered by the revenues from the offset of electricity. Moreover, it reduces greenhouse gas emissions and improves the circularity.

Proceedings of the 29th European Biomass Conference and Exhibition, 26-29 April 2021, Online, pp. 1355-1358

Country
Netherlands
Related Organizations
Keywords

Circular economy, Economics, Anaerobic digestion, Biomass, Waste disposal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research