
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The promotion effect of nitrous acid on aerosol formation in wintertime Beijing: possible contribution of traffic-related emission
doi: 10.5194/acp-2020-150
Abstract. Secondary aerosol is a major component of PM2.5, yet its formation mechanism in the ambient atmosphere is still an open question. Based on field measurements in downtown Beijing, we show that the photolysis of nitrous acid (HONO) could promote the formation of organic and nitrate aerosol in wintertime Beijing as evidenced by the growth of the mass concentration of organic and nitrate aerosols linearly increasing as a function of consumed HONO from early morning to noon. The increased nitrate also lead to the formation of particulate matter ammonium by enhancing the neutralization of nitric acid by ammonia. We further illustrate that over 50 % of the ambient HONO during pollution events in wintertime Beijing might be related to traffic-related emission including direct emission and formation via the reaction between OH and vehicle-emitted NO. Overall, our results highlight that the traffic-related HONO plays an important role in the oxidative capacity and in turn, contribute to the haze formation in winter Beijing. Mitigation of HONO and NOx emission from the vehicles might be an effective way to reduce secondary aerosol mass formation and severe haze events in wintertime Beijing.
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species China (People's Republic of)
- University of Zurich Switzerland
- University of Chinese Academy of Sciences China (People's Republic of)
- University of Helsinki - Institute for Atmospheric and Earth System Research
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
