Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biogeosciences (BG)arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biogeosciences (BG)
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biogeosciences (BG)
Article . 2025
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal set of leaf and aboveground tree elements for predicting forest functioning

Authors: Écio Souza Diniz; Eladio Rodríguez-Penedo; Roger Grau-Andrés; Jordi Vayreda; Marcos Fernández-Martínez;

Optimal set of leaf and aboveground tree elements for predicting forest functioning

Abstract

Abstract. The role played by environmental factors in the functioning of forest ecosystems is relatively well known. However, the potential of the elemental composition of trees (i.e., elementomes) as a predictor of forest functioning remains elusive. We assessed the predictive power of elemental composition from different perspectives: testing whether aboveground element stocks or concentrations explain forest production and productivity (i.e., production per unit of standing biomass) better than leaf elements or environmental factors, and identifying the optimal set (combination and quantity) of elements that best predicts forest functioning. To do so, we used a forest inventory of 2000 plots in the northeast of the Iberian Peninsula, containing in-site information about the elementomes (C, Ca, K, Mg, N, Na, P, and S) of leaves, branches, stems, and barks, in addition to annual biomass production per organ. We found that models using leaf element stocks as predictors achieve the highest explained variation in forest production. The optimal dimensionality was achieved by combining the foliar stocks of C, Ca, K, Mg, N, and P and interactions (C × N, C × P, and N × P). Forest biomass productivity was best predicted by forest age. Hence, our results indicate that leaf element stocks are better predictors of forest biomass production than aboveground element concentrations or stocks, thus hinting at leaf measurements as critical factors for predicting variations in forest biomass production.

Country
Spain
Related Organizations
Keywords

Forest ecosystems, Leaves, QE1-996.5, Forest biomass, Ecology, Chemical composition, Organisms, Geology, Forests, Ecosystems, Carbon, Trees, Terrestrial ecosystems, Influence, Life, QH501-531, Environmental factors, Magnesium, Calcium, Environmental conditions, Biomass, Branches, QH540-549.5, Productivity

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research