
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ideas: Photoelectrochemical carbon removal as negative emission technology
doi: 10.5194/esd-2018-53
Ideas: Photoelectrochemical carbon removal as negative emission technology
Abstract. The pace of the transition to a low-carbon economy – especially in the fuels sector – is not high enough to achieve the 2 °C target limit for global warming by only cutting emissions. Most political roadmaps to tackle global warming implicitly rely on the timely availability of mature negative emission technologies, which actively invest energy to remove CO2 from the atmosphere and store it permanently. The models used as a basis for decarbonisation policies typically assume an implementation of such large-scale negative emission technologies starting around the year 2030, ramped up to cause net negative emissions in the second half of the century and balancing earlier CO2 release. On average, a contribution of −10 Gt CO2/year is expected by 2050.(Anderson and Peters, 2016) A viable approach for negative emissions should (i) rely on an unlimited source of energy (solar), (ii) result in a safely storable product (e.g. liquid or solid, not gaseous), (iii) be highly efficient in terms of water and energy use, to reduce the required land area and competition with water and food demands of a growing world population and (iv) be large-scale feasibility and affordability.
- Department of Chemistry, University of Cambridge, UK United Kingdom
- University of Cambridge United Kingdom
- Helmholtz Association of German Research Centres Germany
- Department of Chemistry, University of Cambridge, UK United Kingdom
- University of Cambridge / Department of Chemistry United Kingdom
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
