Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wind Energy Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wind Energy Science
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wind Energy Science
Article . 2025
Data sources: DOAJ
Copernicus Publications
Other literature type . 2025
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linking large-scale weather patterns to observed and modeled turbine hub-height winds offshore of the US West Coast

Authors: Ye Liu; Timothy W. Juliano; Raghavendra Krishnamurthy; Brian J. Gaudet; Jungmin Lee;

Linking large-scale weather patterns to observed and modeled turbine hub-height winds offshore of the US West Coast

Abstract

Abstract. The US West Coast holds great potential for wind power generation, although its potential varies due to the complex coastal climate. Characterizing and modeling turbine hub-height winds under different weather conditions are vital for wind resource assessment and management. This study uses a two-stage machine learning algorithm to identify five large-scale meteorological patterns (LSMPs): post-trough, post-ridge, pre-ridge, pre-trough, and California high. The LSMPs are linked to offshore wind patterns, specifically at lidar buoy locations within lease areas for future wind farm development off Humboldt and Morro Bay. While each LSMP is associated with characteristic large-scale atmospheric conditions and corresponding differences in wind direction, diurnal variation, and jet features at the two lidar sites, substantial variability in wind speeds can still occur within each LSMP. Wind speeds at Humboldt increase during the post-trough, pre-ridge, and California-high LSMPs and decrease during the remaining LSMPs. Morro Bay has smaller responses in mean speeds, showing increased wind speed during the post-trough and California-high LSMPs. Besides the LSMPs, local factors, including the land–sea thermal contrast and topography, also modify mean winds and diurnal variation. The High-Resolution Rapid Refresh model analysis does a good job of capturing the mean and variation at Humboldt but produces large biases at Morro Bay, particularly during the pre-ridge and California-high LSMPs. The findings are anticipated to guide the selection of cases for studying the influence of specific large-scale and local factors on California offshore winds and to contribute to refining numerical weather prediction models, thereby enhancing the efficiency and reliability of offshore wind energy production.

Keywords

TJ807-830, Renewable energy sources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research