Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wind Energy Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wind Energy Science
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wind Energy Science
Article . 2025
Data sources: DOAJ
Copernicus Publications
Other literature type . 2025
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring noise annoyance and sound quality for airborne wind energy systems: insights from a listening experiment

Authors: Helena Schmidt; Renatto M. Yupa-Villanueva; Daniele Ragni; Roberto Merino-Martínez; Piet J. R. van Gool; Roland Schmehl;

Exploring noise annoyance and sound quality for airborne wind energy systems: insights from a listening experiment

Abstract

Abstract. This study investigates the relationship between sound quality metrics (SQMs) and noise annoyance caused by airborne wind energy systems (AWESs). In a controlled listening experiment, 75 participants rated their annoyance on the International Commission on Biological Effects of Noise (ICBEN) scale in response to recordings from in-field measurements of two fixed-wing and one soft-wing ground-generation AWES. All recordings were normalized to an equivalent A-weighted sound pressure level of 45 dBA. The results revealed that sharpness was the only SQM predicting participants' annoyance. Fixed-wing kites, characterized by sharper and more tonal and narrowband sound profiles, were rated as more annoying than the soft-wing kite, characterized by higher loudness values. In addition, the effect of some SQMs on annoyance depended on participant characteristics, with loudness having a weaker impact on annoyance for participants familiar with AWESs and tonality having a weaker effect on annoyance for older participants. These findings emphasize the importance of considering psychoacoustic factors in the design and operation of AWESs to reduce noise annoyance.

Keywords

TJ807-830, Renewable energy sources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold