
Found an issue? Give us feedback
https://doi.org/10.5194/wes-20...
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
Online Research Database In Technology
Article . 2020
Data sources: Online Research Database In Technology
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Brief communication: Nowcasting of precipitation for leading edge erosion-safe mode

Authors: Anna-Maria Tilg; Charlotte Bay Hasager; Hans-Jürgen Kirtzel; Poul Hummelshøj;
Abstract
Abstract. Leading edge erosion (LEE) of wind turbine blades is caused by the impact of hydrometeors, which appear in solid or liquid phase. A reduction of the wind turbine blades’ tip speed during severe precipitation events can mitigate LEE. To apply such an erosion-safe mode, a precipitation nowcast is required. Theoretical considerations indicate that the time a raindrop needs to fall to the ground is sufficient to reduce the tip speed. Furthermore, it is described that a compact vertical pointing radar that measures rain in different heights with a sufficient high spatio-temporal resolution can nowcast rain for an erosion-safe mode.
Country
Denmark
Related Organizations
- Technical University of Denmark Denmark
Keywords
TJ807-830, Renewable energy sources
TJ807-830, Renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
10
Top 10%
Average
Top 10%
Green
gold
Beta
Fields of Science
Fields of Science
Related to Research communities
Energy Research