
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental investigation of Mini Gurney Flaps in combination with vortex generators for improved wind turbine blade performance

handle: 2158/1286369
Experimental investigation of Mini Gurney Flaps in combination with vortex generators for improved wind turbine blade performance
Abstract. This wind tunnel study investigates the aerodynamic effects of Mini Gurney flaps (MGFs) and their combination with vortex generators (VGs) on the performance of airfoils and wind turbine rotor blades. VGs are installed on the suction side aiming at stall delay and increased maximum lift. MGFs are thin angle profiles that are attached at the trailing edge in order to increase lift at pre-stall operation. The implementation of both these passive flow control devices is accompanied by a certain drag penalty. The wind tunnel tests are conducted at the Hermann- Föttinger Institut of the Technische Universität Berlin. Lift is determined with a force balance and drag with a wake rake for static angles of attack from −5° to 17° at a constant Reynolds number of 1.5 million. The impact of different MGF heights including 0.25 %, 0.5 % and 1.0 % and an uniform VG height of 1.1 % of the chord length are tested on three airfoils that are characteristic for different sections of large rotor blades. Furthermore, the clean and the tripped baseline cases are considered. In the latter, leading edge transition is forced by means of Zig Zag (ZZ) turbulator tape. The preferred configurations are the smallest MGF on the NACA63(3)618 and the AH93W174 (mid to tip blade region) and the medium sized MGF combined with VGs on the DU97W300 (root to mid region). Next, the experimental lift and drag polar data is imported into the software QBlade in order to design a generic rotor blade. The blade performance is simulated with and without the add-ons based on two case studies. In the first case, the retrofit application on an existing blade mitigates the adverse effects of the ZZ tape. Stall is delayed and the aerodynamic efficiency is partly recovered leading to an improvement of the power curve. In the second case, the new design application allows for the design of a more slender blade while maintaining the power output. Moreover, the alternative blade appears to be more resistant against forced leading edge transition.
TL, TJ807-830, mini Gurney flaps, Renewable energy sources, turbine blades, 620, 600 Technik, Medizin, angewandte Wissenschaften::620 Ingenieurwissenschaften::620 Ingenieurwissenschaften und zugeordnete Tätigkeiten, wind turbines, airfoil, experiments, vortex generator, gurney flap, TJ, vortex generators, wind tunnel study
TL, TJ807-830, mini Gurney flaps, Renewable energy sources, turbine blades, 620, 600 Technik, Medizin, angewandte Wissenschaften::620 Ingenieurwissenschaften::620 Ingenieurwissenschaften und zugeordnete Tätigkeiten, wind turbines, airfoil, experiments, vortex generator, gurney flap, TJ, vortex generators, wind tunnel study
1 Research products, page 1 of 1
- 2004IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
