
Found an issue? Give us feedback
https://doi.org/10.5194/wes-20...
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
Online Research Database In Technology
Article . 2022
Data sources: Online Research Database In Technology
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Brief communication: How does complex terrain change the power curve of a wind turbine?

Authors: Niels Troldborg; Søren J. Andersen; Emily L. Hodgson; Alexander Meyer Forsting;
Abstract
Abstract. The power performance of a wind turbine in complex terrain is studied by means of Large Eddy Simulations (LES). The simulations show that the turbine performance is significantly different compared to what should be expected from the available wind. The reason for this deviation is that the undisturbed flow field behind the turbine is non-homogeneous and therefore results in a very different wake development and induction than seen for a turbine in flat homogeneous terrain.
Country
Denmark
Related Organizations
- Technical University of Denmark Denmark
Keywords
TJ807-830, Renewable energy sources
TJ807-830, Renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
13
Top 10%
Average
Top 10%
Green
gold
Beta
Fields of Science (3) View all
Fields of Science
Related to Research communities
Energy Research