
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Grand challenges of wind energy science – meeting the needs and services of the power system

Abstract. The share of wind power in power systems is increasing dramatically, and this is happening in parallel with increased penetration of solar photovoltaics, storage, other inverter-based technologies, and electrification of other sectors. Recognising the fundamental objective of power systems, maintaining supply–demand balance reliably at the lowest cost, and integrating all these technologies are significant research challenges that are driving radical changes to planning and operations of power systems globally. In this changing environment, wind power can maximise its long-term value to the power system by balancing the needs it imposes on the power system with its contribution to addressing these needs with services. A needs and services paradigm is adopted here to highlight these research challenges, which should also be guided by a balanced approach, concentrating on its advantages over competitors. The research challenges within the wind technology itself are many and varied, with control and coordination internally being a focal point in parallel with a strong recommendation for a holistic approach targeted at where wind has an advantage over its competitors and in coordination with research into other technologies such as storage, power electronics, and power systems.
- Imperial College London United Kingdom
- Royal Institute of Technology Sweden
- National Renewable Energy Laboratory United States
- SINTEF AS Norway
- National Renewable Energy Laboratory United States
TJ807-830, Renewable energy sources
TJ807-830, Renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
