Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Problems of the Regi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Problems of the Regional Energetics
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Problems of the Regional Energetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of Compressed Air Energy Conversion Processes in a Rotary Piston Pneumatic Engine

Authors: Oleksandr Mytrofanov; Arkadii Proskurin;

Analysis of Compressed Air Energy Conversion Processes in a Rotary Piston Pneumatic Engine

Abstract

This article describes a rotary piston pneumatic engine with a gas exchange system design that minimizes the value of the relative dead volume, as well as ensures the minimum dimensions and weight of the engine. The main purpose of the study is to evaluate the conversion efficiency of compressed air energy in the working cylinder of the rotary piston pneumatic engines using the exergy method of thermodynamic analysis. To achieve the set goal of the study, physical modeling of various operation modes has been performed. The most significant result is that, based on the physical and mathematical modeling, a thermodynamic assessment of the efficiency of the compressed air energy conversion has been performed. The significance of the results obtained lies in the fact that the effect of the main operational parameters of the pneumatic engine on the efficiency of energy conversion is established. The basic equations of the exergy method of the thermodynamic analysis are presented. The results of physical and mathematical modeling of various operation modes are presented. The main reasons for the decrease in the energy conversion efficiency at low and rated loads are emphasized. The amount of exergy supplied with the air flow was established, which, depending on the operation mode, amounted to 2.2…11.4 kW. According to the presented results, the most optimal speed range, based on the achievement of the maximum values of the specific efficient work and exergy efficiency, is 55…70% of the nominal value. It was found that an increase in the operation pressure decreases slightly the exergy efficiency. A twofold increase in the operation pressure of the pneumatic engine increases the efficient power by 46 % at a simultaneous decrease in the exergy efficiency by 8.2 %.

Keywords

TK1001-1841, Production of electric energy or power. Powerplants. Central stations, TJ807-830, Electrical engineering. Electronics. Nuclear engineering, rotary piston engine, Renewable energy sources, compressed air, TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold