Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Preprint . 2024
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Preprint . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Preprint . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Power System Benefits of Simultaneous Domestic Transport and Heating Flexibility in Great Britain's Energy Transition

Authors: Franken, Lukas; Hackett, Andy; Lizana, Jesus; Riepin, Iegor; Jenkinson, Ryan; Lyden, Andrew Francis; Yu, Lucy; +1 Authors

Power System Benefits of Simultaneous Domestic Transport and Heating Flexibility in Great Britain's Energy Transition

Abstract

The electrification of heating and transport in Great Britain will allow households to provide more flexibility to the grid. Previous studies show how domestic demand flexibility enables more renewable generation to be usable and reduces the required capacity expansion of both network and dispatchable generation. However, it remains less clear how flexibility in transport and heat interact and how the achieved benefits are spatially distributed. This research addresses these questions using a novel linear optimisation model PyPSA-FES, designed to simulate optimistic and pessimistic transition pathways in National Grid ESO Future Energy Scenarios. PyPSA-FES models the future power system in Great Britain at high spatiotemporal resolution and integrates demand flexibility from both smart charging electric vehicles and thermal storage-coupled heat pumps. The model then optimises the trade-off between reinforcing the grid to align charging and heating profiles with renewable generation versus expanding dispatchable generation capacity. The results show that from 2030, under optimistic transition assumptions, domestic demand flexibility can enable an additional 20-30 TWh of renewable generation annually and reduce dispatchable generation and distribution network capacity by ∼20 GW each, resulting in a total cost reduction of around £5bn yearly. However, further experiments suggest that half of the total system cost reduction is already achieved by only 25% of electric vehicles alone, while the benefits of flexible heating are almost linear with rollout. Further, the cross-sectoral analysis shows that each sector’s flexibility substantially affects the benefits achieved in the other. The findings indicate that once smart electric vehicle charging reaches a 25% penetration rate in households, minimal benefits are observed for implementing smart 12-hour thermal storages for heating flexibility at the national level. Additionally, smart heating benefits decrease by 90% across all metrics when only pre-heating (without thermal storages) is considered. Spatially, demand flexibility is often considered to alleviate the need for north-south transmission grid expansion. While neither confirmed nor opposed here, the results highlight a more nuanced dynamic where generation capacities are moved closer to demand centres, enhancing connectivity within UK sub-regions through ∼1000 GWkm of additional transmission grid capacity.

Related Organizations
Keywords

PyPSA, Energy, Sustainable Energy, Heat Pumps, Great Britain, Energy Transition, Energy Economics, Open-Source, Energy System, Demand Flexibility, Future Energy Scenarios, Energy System Modelling, Electric Vehicles, Python, Linear Optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research