Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2017
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2017
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2017
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis Of The Processes Of Short-Currents Limiting By Transformer With High-Temperature Superconducting Windings

Authors: Manusov V.Z.; Pavlyuchenko D.A.; Ahyoev J.S.;

Analysis Of The Processes Of Short-Currents Limiting By Transformer With High-Temperature Superconducting Windings

Abstract

An important advantage of transformers with high-temperature superconducting winding is their ability to limit the short-circuit currents. The article discusses a physico-mathematical model that analyses transient processes at short-circuit currents in electrical networks containing transformers with a high-temperature superconducting winding. One of the main ideas and objectives of this work is to investigate the process of short-circuit currents limiting by means of a transformer with a high-temperature superconductor winding, which makes it possible to combine two series-connected elements in one device: transformer and a reactor. The effectiveness of this method is due to the fact that when the short-circuit currents exceed the critical value of the temperature of the superconductor winding, it goes to the normal state with high winding resistance for short-circuit currents. It is important to know when a superconductor should go over to a normal state with the loss of superconductivity. For this purpose, a program was developed to determine the amount of heat generated by a short-circuit current flowing before it is disconnected. For a transformer with high-temperature superconducting winding with a capacity of 40 MVA, a short circuit must be eliminated after 0.1 seconds, without switching off the transformer. To limit the short-circuit current; it is intended to use a hybrid winding. The performed assessment showed that the return of the winding to the superconducting state, first, depends on the ratio of the short-circuit currents to the operating current. This is the criterion for the return/non-return to the superconducting state.

Related Organizations
Keywords

TK1001-1841, TJ807-830, superconductor winding, Renewable energy sources, reactor, TK1-9971, power loss, short-circuit currents, Production of electric energy or power. Powerplants. Central stations, pre-emergency mode, limitation, a, transformer, Electrical engineering. Electronics. Nuclear engineering, energy efficiency

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 3
  • 4
    views
    3
    downloads
    Data sourceViewsDownloads
    ZENODO43
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
4
3
Green
gold
Related to Research communities
Energy Research