Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2018
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2018
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2018
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://zenodo.org/record/1289...
Article . 2018
License: CC BY
Data sources: Sygma
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Silicon And Silicon-Boron Alloys As Phase Change Materials In Thermal Energy Storage Units

Authors: Polkowski, Wojciech; Sobczak, Natalia; Tangstadt, Merete; Safarian, Jafar; Jiao, Jian Mang; Grorud, Bettina;

Silicon And Silicon-Boron Alloys As Phase Change Materials In Thermal Energy Storage Units

Abstract

Although Si and Si-B alloys seem to be perfect candidates as high temperature PCMs (phase change materials) (in terms of their high melting points and latent heat values), a number of scientific/technical challenges have to be faced before introducing them into real Latent heat thermal energy storage (LHTES) devices. A special attention should be paid to a proper selection of reliable refractories for building the PCM container. For this purpose, the involved teams from the Foundry Research Institute in Krakow (FRI) and Norwegian University of Science and Technology (NTNU), have agreed to explore two distinctly different approaches: (i) “Non-wetting + negligible reactivity concept” and (ii) “Self-crucible concept”, respectively. In the former attempt, it has been assumed that the selected refractory material will be inert towards the contacting PCMs, i.e. the system will be characterized by non-wetting behaviour and a lack of significant dissolution of the refractory in molten PCM as well as no new reactively formed products. On the contrary, the principles of the latter approach include a reactive formation of continuous interfacial product layer at initial stages of PCM/refractory interaction. The reactively formed layer should play a role of barrier coating, and thus forms a “self-crucible” inside the PCM vessel. In order to accomplish the Project’s goals, Si and Si-B alloys were fabricated by using various metallurgical routes (including an induction melting or an electric arc melting). After that, their high temperature solid/liquid state interaction with refractories selected in accordance to both proposed approaches, was examined. Additionally, a proper thermodynamic assessment of phase equilibria was performed in order to support obtained experimental data.

Keywords

Amadeus Project

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 11
    download downloads 13
  • 11
    views
    13
    downloads
    Data sourceViewsDownloads
    ZENODO1113
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
4
Top 10%
Average
Average
11
13
Green
Funded by
Related to Research communities
Energy Research