Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2018
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2018
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2018
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of the Influence of Gas Pressure at the Inlet in Jet-Reactive Turbine on its Performance Indicators

Authors: Vanyeyev S.M.; Meleychuk S.S.; Baga V.N.; Rodymchenko T.S.;

Investigation of the Influence of Gas Pressure at the Inlet in Jet-Reactive Turbine on its Performance Indicators

Abstract

The results of gas current calculations in a flow part in not reversive jet-reactive turbine at pressure upon an input to the turbine up to 10 МPа (earlier calculations were spent up to 0.9 МPа), executed in program complex FlowVision for the first time are presented in the article. The dependences of factors and parameters of efficiency of the jet-reactive turbine (JRT) from total pressure upon an input in the turbine are received. They are exposed in a graphic type. The primary goals of the research were: calculation of parameters of current of gas in a flow part of the jet-reactive turbine by means of program complex FlowVision at pressure upon an input of the JRT from 0.4 up to 10 МPа, the analysis of results of calculation, reception of dependences of different factors from total pressure upon an input in the turbine. The Influence of total pressure on an input in the JRT on various factors, such as: total pressure recovery factor, factor of hydraulic resistance and factor of outflow were investigated. It was discovered that total pressure recovery factor  increases for 27 % at an increase of pressure of an input of the jet-reactive turbine up to 4 МPа. It was determined that the hydraulic resistance factors related to the dynamic pressure at the inlet ξin and the turbine output ξout is reducing at 2.7 and 3.3 times, respectively, with an increase in pressure at the inlet of the jet- reactive turbine to 4 MPa.

Related Organizations
Keywords

TK1001-1841, total pressure recovery factor, jet-reactive turbine, TJ807-830, starting torque, Renewable energy sources, flow part, TK1-9971, Production of electric energy or power. Powerplants. Central stations, specific starting torque, total pressure, a, Electrical engineering. Electronics. Nuclear engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average