

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of Gas Physical Properties on Labyrinth Seals Throttling Characteristics

The most important issue when designing the labyrinth sealing knots is the question of the correctness of the model tests results application. This task has not had a strong solution so far. For practical calculations of labyrinth seals famous formulae for determining leakage through the hole are used. They are supplemented by coefficients obtained experimentally in conditions which practically had nothing to do with full scale ones: flat (non-circular) models are used, possible effect of the shaft rotation and the operating environment behavior are not taken into account. For the purpose of obtaining the answer to a question concerning the impact factor of gas physical properties on the flow characteristics of labyrinth seals a series of physical and numerical experiments on various gases were carried out. The studies were conducted under conditions maximum approximate to field ones. Pilot studies were conducted on a standard experimental bench to specify throttling characteristics of labyrinth seals. Numerical investigations were conducted using the СFD techniques on various gases. Numerical study and experiment confirmed the influence of gas physical properties on throttling characteristics of labyrinth seals. The heavier the gas the more intensive symptoms are. Flow coefficient divergence of the seal run by air and vapor is about 30%. It has been proved and confirmed by experiments. Visualization of flow has been obtained. Studies have shown a significant impact of gas physical properties on leakage degree.
- Sumy State University Ukraine
- Sumy State University Ukraine
TK1001-1841, TJ807-830, labyrinth seal, Renewable energy sources, physical properties, TK1-9971, model tests, Production of electric energy or power. Powerplants. Central stations, a, Electrical engineering. Electronics. Nuclear engineering, prototype bench, flow visualization
TK1001-1841, TJ807-830, labyrinth seal, Renewable energy sources, physical properties, TK1-9971, model tests, Production of electric energy or power. Powerplants. Central stations, a, Electrical engineering. Electronics. Nuclear engineering, prototype bench, flow visualization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 55 download downloads 33 - 55views33downloads
Data source Views Downloads ZENODO 55 33


