Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2019
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ways to Reduce the Resistance Torque During the Disk Rotor Spinning and to Increase the Electromotive Force in the Transverse Magnetic Flux Generator in No-Load Mode

Authors: O.O. Duniev; M. Stamann; A.M. Masliennikov; A.V. Yehorov;

Ways to Reduce the Resistance Torque During the Disk Rotor Spinning and to Increase the Electromotive Force in the Transverse Magnetic Flux Generator in No-Load Mode

Abstract

The article reviews the transverse magnetic flux machine designs. The work aim was the analysis of the transverse magnetic flux generator with a disk rotor, the stator poles optimal number selection and the resistance torque reducing. This resistance torque was created by one-sided magnetic attraction force from the permanent magnets on the rotor and it hasn’t been considered previously, which is a novelty of this work. The ways to increase the electromotive force in the generator are also considered. The main work goal was obtained by magnetic system analysis of generator using Ansys Maxwell software and disk rotor strength analysis using ASCON Компас-3D software. It is concluded that the magnetic reversal frequency of the stator cores depends on the number of permanent magnets on the rotor. The dependence of the magnetic induction average value in the U-shaped stator core on their number was obtained during the magnetic analysis. The disk rotor strength simulation allowed getting the maximum possible bend of the disk rotor under the influence of the one-sided magnetic attraction force. The neodymium permanent magnets help to improve generator efficiency and to decrease its mass-dimensional indicators. It was proposed to use an uneven permanent magnets distribution on the rotor in the transverse magnetic flux generator to reduce the resistance torque of the disk rotor. The permanent magnets attraction force that interacts with stator steel poles was considered. The dependence of magnetic attraction force of the permanent magnets on the air gap size of the generator has been obtained.

Keywords

TK1001-1841, force of one-sided magnetic attraction, TJ807-830, Renewable energy sources, TK1-9971, Production of electric energy or power. Powerplants. Central stations, disk rotor, a, electromotive force, permanent magnet, Electrical engineering. Electronics. Nuclear engineering, resistance torque, transverse magnetic flux generator

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average