

Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Negative-energy-states-and-interstellar-travel
Authors: Jean-Pierre Petit;
Abstract
Abstract In a recent work we have shown that quantum mechanics could be, and had to be extended to negative energy states, which go with negative masses. The Janus Cosmological Model has introduced negative energy and negative mass particles, with good agreement with observational data. Based on the metric properties of JCM we suggest a mass inversion process which would make possible interstellar travels in moderate travel times. In addition our craft would not need any propulsion system.
Keywords
negative masses, Janus Cosmological Model, interstellar travels, negative energy
negative masses, Janus Cosmological Model, interstellar travels, negative energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 2 download downloads 14 - 2views14downloads
Data source Views Downloads ZENODO 2 14

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
influence
Influence provided by BIP!
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
impulse
Impulse provided by BIP!
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
views
Views provided by UsageCounts

downloads
Downloads provided by UsageCounts

0
Average
Average
Average
2
14
Green
Related to Research communities
Energy Research