

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
D3.2 Ground Source Heat Exchanger Design Framework
The goal of WP3 is to develop a design framework for novel ground (slinky/earth basket) type shallow heat exchangers. This design framework, based on developing theoretical models of heat transfer and on experimental data, will be implemented in a design- and engineering calculation tool to support the implementation of these new technologies in the market. The design framework defines the goals of the (thermal and hydraulic) design (especially sizing) of the ground source heat exchanger, as a function of different boundary conditions (building energy demand, soil thermal parameters, required system performance etc.). Moreover, an engineering tool it is aimed at the overall system design and will support the engineer in the choices of heat exchanger technology (vertical, horizontal or earth basket/slinky) and other design parameterizations. This deliverable describes the overall design process and provides information and procedures for data collection and evaluation. The detailed description of the design process for different types of Ground Heat Exchangers is based on the design of the actual GHEX systems implemented in the demo sites of the Geofit project and includes vertical borehole heat exchangers, shallow slinky heat exchangers and earth basket type heat exchangers. This deliverable is suited to be implemented in a design handbook or procedure that can be part of an integrated quality control system.
shallow heat exchangers, engineering tool, design framework
shallow heat exchangers, engineering tool, design framework
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 2 download downloads 1 - 2views1downloads
Data source Views Downloads ZENODO 2 1


