Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Part of book or chapter of book . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Part of book or chapter of book . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2020
License: CC BY
Data sources: ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PHYSICAL CHARACTERIZATION AND MECHANICAL PERFORMANCE OF LIGNOCELLULOSTIC BIOMASS PELLETS

Authors: SILVA, S. B.; ARANTES, M. D. C.; ANDRADE, J. K. B.; VIEIRA, R. S.; CASTRO, A. F. N. M.; MENEZES, A. L.;

PHYSICAL CHARACTERIZATION AND MECHANICAL PERFORMANCE OF LIGNOCELLULOSTIC BIOMASS PELLETS

Abstract

The objective was to evaluate the physical and energetic characteristics of pellets produced with different lignocellulosic biomasses for bioenergy generation. Moisture and bulk density were determined for biomass and pellets. In addition, for pellets mechanical durability, fines content, diametric compression, diameter, length and unit density were measured. There was an increase in bulk density and a reduction in the moisture content of the fuels produced compared to fresh biomass. The highest averages of mechanical durability were obtained by pellets produced with biomass mixtures. Diameter compression ranged from 0.52 to 5.96 MPa for commercial pellet and 100% elephant grass, respectively. Pellets produced with 100% sugarcane bagasse showed low diametral compression. Regarding the percentage of fines, it is observed that the pellets produced with biomass mixtures presented the lowest averages when compared to those produced with only one biomass. It is observed that the pellets produced with more than one biomass in its composition had the smallest diameters and the average pellet length ranged from 12.87 to 17.85 mm. Unit apparent density ranged from 1,105 (EC50 BC50) to 1,265 kg m-3 (EC50 E50). The pellets produced with lignocellulosic biomass compositions had better performances when compared to those produced with only one biomass.

Keywords

Waste Recovery, Bioenergy, Renewable sources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
    download downloads 2
  • 1
    views
    2
    downloads
    Data sourceViewsDownloads
    ZENODO12
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
1
2
Green
Related to Research communities
Energy Research